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Abstract-Dispersion of heat or mass from a point source in homogeneous isotropic turbulence is 
considered. Molecular diffusion can cause thermal or molecular markers to escape from fluid particles. As 
a consequence, the contribution of turbulence to the dispersion decreases with increasing molecular 
diffusivity. This effect is explored by calculating the property autocorrelation for turbulent fields having 
defined Eulerian space-time correlations. The analysis uses the Corrsin independence approximation and 
the assumption that the distribution of the particle displacements at some time after release is defined by 

a Gaussian function. 

1. INTRODUCTION 

MOLECULAR diffusivity of heat or mass affects tur- 
bulent transport in two ways. Firstly, because the scale 
characterizing molecular motion is so small, molec- 
ular diffusion is independent of and additive to the 
turbulent diffusion ; the total diffusivity is, therefore, 
the sum of a turbulent and a molecular component 

E = Ed+9 (1) 

where cd is the eddy diffusivity and 9, the molecular 
diffusion coefficient. Secondly, molecular diffusion 
can cause thermal or molecular markers to escape 
from fluid particles, so as to decrease the effectiveness 
of turbulent motions in dispersing heat and mass. 

A theoretical analysis of the effect of molecular 
diffusion on turbulent diffusion was presented by 
Saffman [I]. He generalized Taylor’s Lagrangian for- 
mulation of the turbulent diffusion problem [2] by 
introducing the concept of a ‘substance or property 
autocorrelation’, in order to allow for molecular 
effects. Saffman treated the idealized case of dis- 
persion of a dynamictilly passive substance from a 
point in a stationary, homogeneous turbulent velocity 
field. He showed that the total dispersion, D, rep- 
resented as the mean-squared displacement of the 
diffusing marker, at time t can be given as 

D(t) = 2u2 (f-s)*R;(s) ds+29t (2) 

with 

&d(f) = u* R;(s) ds 

where it is assumed that the markers are released at 
t = 0. Here, u is the root-mean-square of one of the 
components of the fluctuating velocity field defined 
by u* = (u,*u,)/3, where the usual convention that a 

repeated index indicates summation is observed. The 
property autocorrelation Rb, is defined as 

1 (u;(xo, to) .dX”, r,+s)) R>(S) E J 
L2 

(4) 

where vj(xo, I) is the ith component of the fluctuating 
fluid velocity at the position X(x,, 1) of a marker 
which was at x,, at the time of release. It differs from 
the well known Lagrangian autocorrelation, R:, in 
that it correlates fluid velocity components along the 
trajectory of molecular or thermal markers, and not 
of fluid particles. Since a marker can leak out of a 
fluid particle because of random molecular motion, 
Rb, is not purely a property of the turbulence, but 
depends also on molecular diffusivity. In this context, 
a fluid particle can be viewed as the limiting case of a 
marker with vanishingly small molecular diffusivity. 
Therefore, the Lagrangian eddy diffusivity, +(I), for 
fluid particles is obtained by substituting the fluid 
Lagrangian autocorrelation, R:, for the property 
autocorrelation in equation (3). 

Even in unbounded flow, the property auto- 
correlation, Ri, in equation (3) vanishes at sufficiently 
long time delays. As a result, the eddy diffusivity, .sd, 
eventually reaches a constant value which char- 
acterizes the dispersive effectiveness of the turbulent 
motions. The focus of this paper is the investigation 
of how Ed decreases with increasing 9. The system 
considered is the dispersion of heat or mass from a 
point source in a three-dimensional, incompressible, 
stationary, isotropic turbulent field, with zero mean 
velocity. The influence of molecular diffusion on the 
property autocorrelation and, therefore, the turbulent 
diffusion coefficient defined by equation (3) is exam- 
ined. Since no solidly based results are available for 
finite diffusion times, the main goal of the present 
study is to provide an understanding of the effects of 
molecular diffusion for all times. 

T’he appioach taken, which is described in a thesis 
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NOMENCLATURE 

9 molecular diffusivity Greek symbols 
D mean-squared displacement /3 dimensionless Eulerian integral time scale 

.f longitudinal Eulerian velocity correlation (equation (3 I)) 
9 lateral Eulerian velocity correlation 4, Kronecker delta 
L Eulerian integral length scale 

(equation (I 3)) E 
eddy diffusivity 
Taylor microscale 

P probability density of displacement 5 convergence tolerance 
Pe Peclet number, Lu/9 5 defined in equation (21a). 
r separation vector 
R velocity autocorrelation 
s time delay Subscripts 
S defined in equation (2 I b) d quantity affected by molecular diffusivity 
I time f quantity pertaining to fluid particles 
T integral time scale (independent of molecular diffusivity) 
Ii root-mean-square Eulerian turbulent ith component 

velocity b quantity at 1 = 0. 
u, ith component of the fluctuating Eulerian 

turbulent velocity 
1’1 ith component of the fluctuating Superscripts 

Lagrangian turbulent velocity E Eulerian 
X Eulerian coordinates L Lagrangian 
x Lagrangian coordinates. * dimensionless quantity. 

by Kontomaris [3]. is based on a generalization of 
the hypothesis of Corrsin [4, 51 that in homogeneous 
turbulence the Lagrangian property autocorrelation 
for a fixed time delay can be calculated as the spatial 
average of the Eulerian space-time velocity corre- 
lation, Rfj(r, s) with the same time delay 

R>(s) =; -x 
ss s 

R:(x, s) -PAX : s) dx. 
1. 

(5) 

The probability, pd(X ; s). that a marker has a dis- 
placement X, after elapsed time s, is assumed to be 
Gaussian with variance D(r = s). Equation (5) is 
solved by an iterative procedure where the correlation 
function, R;(s), is assumed. The variance is calculated 
from equation (2) and a new estimate of R;(s) is 
obtained from equation (5). This procedure is re- 
peated until a convergence is reached. A similar iter- 
ative method was first introduced by Lundgren and 
Pointin [6] to relate the Lagrangian to the Eulerian 
correlation and it was later extended to the case of 
real particles by Pismen and Nir [A and further 
refined by Mei [8]. The chief difference in this work is 
that the method is formulated in physical space (rather 
than wavenumber space) with the advantage that the 
physics emerges more naturally. Moreover, the influ- 
ence of molecular diffusion is included. The approach 
is similar to that used by Saffman [9] who pursued 
Corrsin’s suggestion (without considering molecular 
diffusivity effects) by assuming Gaussian forms for 
the Eulerian space-time correlation and for the dis- 
placement probability density. 

The interaction between molecular and turbu- 

lent diffusion can be quantified by the difference 
between the standard Lagrangian autocorrelation 
for fluid particles and the property autocorrelation, 
[R:(s) -R;(S)]. Saffman [I] found that initially 
[R:(s)-R;(S)] = (5%)/l’, where I is the Taylor 
microscale. For longer diffusion times Saffmann 
[I, IO] made a number of speculative proposals in 
which the dependence of the property autocorrelation 
on Prandtl number varies according to the range of 
Prandtl and Reynolds numbers being considered. For 
very small Peclet numbers he obtained results in agree- 
ment with the intuitive proposal of Hinze [I I], 
although the latter was proposed with no restriction 
placed on the Peclet number. More recently, Phythian 
and Curtis [l2] developed an iterative technique 
for calculating the effective long-time eddy diffusivity 
that uses a self-consistent renormalized perturbation 
expansion. Drummond [ 131 calculated the long-time 
effective turbulent diffusivity of a passive scalar quan- 
tity from a path-integral solution of the diffusion 
equation, assuming Gaussian turbulence. Drummond 
et al. [ 141 simulated scalar transport subject to molec- 
ular diffusion in a model isotropic turbulent field. 
Sawford and Hunt [ 151 studied molecular diffusivity 
effects on scalar fluctuations in homogeneous tur- 
bulence by employing a Lagrangian stochastic model 
of turbulent diffusion, developed from the marked- 
particle model of Durbin [ 161. 

In this paper the Eulerian correlation in equation 
(5) is represented as the product of a function of space 
and a function of time. Two forms are explored : one 
is Gaussian and the other is exponential in space and 
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time. The use of either of these correlations in equa- 
tion (5) and the assumption that the displacements 
are Gaussian yields a ratio of the Lagrangian and 
Eulerian time correlations that is a function of the 
mean-square particle displacement, D, made dimen- 
sionless with the Eulerian length scale, L. 

The most important results obtained from this 
relation and equation (2) is the definition of the influ- 
ence of the Peclet number, Lu/9. on the function 
representing the property autocorrelation. R,\(src/L), 
and on the turbulent diffusivity. These results are 
interpreted by deriving two asymptotic relations from 
the expected behavior of D/L’ for large and small 
dimensionless times. m/L. Relations derived in this 
way are consistent with .previous results by Saffman, 
but are less restrictive. 

2. METHOD 

2. I. General descriptiou 
The Eulerian space-time velocity correlation is 

defined as 

(6) 

where the brackets indicate averaging. Space-time 
correlations of the following form are assumed : 

RE(r, s) = R;(r) - RE(~) (7) 

where RE(s) is the one-point Eulerian velocity auto- 
correlation defined as 

R”(s) ~ ! (4(x, 1) ‘4(X, It-S)) 
3 Ml (8) 

For isotropic turbulence the tensor R:(r) can be 
expressed as 

R:(r) = [f(r) -g(r)] * 7 +g(rV,, (9) 

where r is the measure of the separation vector r. 
The following relation between f(r) and g(r) is 

needed to satisfy continuity : 

g(r) =.f(r)+$z. (10) 

Substitution of equations (7), (9) and (10) into 
equation (5) followed by a transformation intospheri- 
cal coordinates yields the following relation : 

- exp [ 1 -& dr. (11) 

The term D(s) is given by equation (2) so that 
equations (2) and (1 I) are a closed set of equations 
which can be solved iteratively to evaluate Ri. A con- 
venient first iteration is to substitute RE(s) for Ri in 

equation (2). This procedure was found to converge 
very quickly especially for high molecular diffusivities. 
The criterion for terminating the iteration procedure 
was that 

yx I[R,L(41,+ I - [R?(s)l,l < 5 

where i is the iteration index and 5 is a convergence 
tolerance. 

For arbitrary f(r) the integration in equation (11) 
can be carried out numerically. For a given time delay, 
the step size, Ar, for the numerical integration is 
chosen small enough to resolve the variation of 
the integrand in equation (I I). the scale of which 
depends on D(s). An appropriate choice, which 
makes the integration results independent of Ar, is 
A44 << J(W)). 

2.2. SpeciJic forms of’f (r)-limiting relalions~for small 
and large times 

The behavior of f(r) for r -+ 0 is described by 

f(') 1-Y I z 2J.2 (12) 

A macroscale L is defined as 

s 

.L 
L= f(r) dr. (13) o 

For large Reynolds numbers A/L -+ 0, and the range 
of r over which equation (12) is a good approximation 
becomes quite small. 

Two forms of the correlation function f(r) are 
explored. One of these is a Gaussian function 

for which L = 1,/(rc/2). The other 

f(r) = exp - L 
( > L (15) 

does not have the correct shape for r + 0, but is more 
representative of the behavior at large Reynolds 
numbers. Similarly, two forms for the time decay of 
the one-point Eulerian autocorrelation are examined 

RE(s) = exp 
.SZ [ 1 -pj3 (16) 

and 

(17) 

where TE is the Eulerian integral time scale. 
The ratio Ri(s)/R’(s), according to equation (I I), 

can be viewed as a function of the total dispersion D 
(for a given f(r)). This functionality can be rep- 
resented for a Gaussian f(r) by the following ana- 
lytical expression : 
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R;(s) = R"(s) ILD(s) - 5'2 [ 1 1 + F (18) 

It is to be noted that Lundgren and Pointin [6] 
obtained an identical equation with their spectral for- 
mulation, limited to the case of fluid particle disper- 
sion. Hinze [I71 has also pointed out that Saffman’s 
analysis [9] leads to a -5/2 dependence of the 
Lagrangian autocorrelation on the mean-square dis- 
placement. For an exponential correlation function of 
the form of equation (15) a closed form solution of 
equation (I I) could not be obtained. However, small 
and long time approximations of Ri can be easily 
obtained. By approximating f(r) as I -r/L for r/L + 
0, the following series expansion, valid for small D 
(or equivalently small time), can be derived : 

(IW 
For large time delays a different approach is 

followed. It is observed that the term rZ(3.f+rf’) 
which appears in equation (11) becomes negligibly 
small for r larger than some value, say rn,, and conse- 
quently the integration has to be carried out only up 
to r = r,,,. Therefore, for D(s) values large compared 
to r,f, the Gaussian term in equation (I I) is approxi- 
mated (in the range 0 < r < rM) as I -r’/2D and the 
integration is carried out analytically to obtain 

R:(s) 
R”(s) D(s) -s’2 

(L’) (19b) 

Equations (l8), (l9a) and (l9b) confirm that 
Ri(.s)/RE(s) < I (see also Fig. I). 

A consideration of the D(t) relation for a fluid 
particle (i.e. equation (2) with 9 = 0) suggests two 
limiting behaviors : for times small with respect to the 
eddy circulation time scale (i.e. tu/L << I) 

D(t) u’t’ 
-Z:--i- 

L? L- PN 

and for large m/L 

1.0 
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0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

(a) Gaussian turbulence. p = 0.5 
(b) Exponential rurbulence. p = 0.5 _ 

I  0 0 I  I  .  I  I  t  I  I  .  ,  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

DIL2 

FIG. I. Influence of dispersion on the ratio of the Lagrangian 
and Eulerian time correlations. 

(21) 

Here &r(a) is the Lagrangian turbulent diffusivity of 
a fluid particle at large times and constant rf equals 

(21a) 

where 

and 

5 

9 
s: = sR:(s) ds (21b) 

0 

L 
T; = 

s 
R:(s) ds. (214 0 

Substitution of equation (20) into equations (I 8) and 
(l9a) will produce a small time approximation for 
R:/RE for Gaussian and exponential f(r), respectively. 
Similarly, substitution of equation (21) into equations 
(18) and (l9b) will produce a large time approxi- 
mation for R:/RE. 

The above discussion can be extended to the case 
of non-zero molecular dQlksivity. In this case two time 
scales in addition to the time scale of the large eddies, 
L/u, can be defined. The initial rate of spread of 
material by turbulent velocities is zero, so molecular 
diffusion is controlling the diffusion process. Scale 
g/u2 represents the time required for the spread due 
to turbulence to equal the spread due to molecular 
diffusion. Scale i2/g represents the time required for 
molecular diffusion to cause a spread of material that 
equals the microscale of the turbulence. For small 
W/L, the approximation 

(22) 

can be made. From equations (22) and (18) the fol- 
lowing relation is obtained : 

Rd’ (s) z RE(s) 
m2s2 

I + 2L2 + $$ 1 
- 512 

For small su2/g equation (23) simplifies to 

(23) 

R;(S) z=z RE(s) 
Ilgs -512 [ 1 I + ~ 

L2 (244 

or 

-5’2 RL(s) - RE(s) d - [ 1 I + * 
L2 (24b) 

if the Taylor microscale L is used instead of the integral 
scale L. With the assumption of small SC&/~*, equation 
(24b) gives 

R;(s) z RE(s) 1-F . 
( > 

(25) 
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With the observation that RE(s + 0) zz 1, the limit- 
ing relation developed by Saffman [I] for s -+ 0 is 
recovered from equation (25). The same result is 
obtained for any form of f(r) which complies with 
equation (12) at its vertex. 

Similar approximations can be derived for the case 
of an exponential f(r). From equation (19a) it is seen 
that the approximation for small tu/L, equation (22), 
gives 

For (su’/g) -+ 0 this simplifies to 

(27) 

As expected, this does not reduce to Saffman’s result 
because the assumed correlation function does not 
have the correct behavior for small r. 

For large tu/L the dispersion can be approximated 
as 

(28) 3.2. Lagrangian autocorrelations 

Here, E,,(co)/E~(co) is the ratio of the long time diffu- 
sivities of the substance (or heat) and of fluid par- 
ticles ; it is a function of the Peclet number. Constant 
7: is defined similarly to 5: and its dependence of Pe 
is weaker than that of e,,(co). 

The dependence of RJ’/RE on the total dispersion 
D/L’, calculated from equation (1 I), is examined in 
Fig. 1. Since D is an increasing function of time this 
ratio is found to decrease monotonically with time. 

Equation (28) can be substituted into equation (18) 
or equation (19b) to obtain an approximation of R:(s) 
for large times. In both cases this reduces to 

Calculated Lagrangian correlations for fluid par- 
ticles are compared with the Eulerian time cor- 
relations in Fig. 2. It is observed that the Lagrangian 
correlation is approximately equal to the Eulerian 
correlation for small time (small D) and significantly 
less for larger times. The ratio of the Lagrangian, T:, 
to the Eulerian integral time scale, TE, is calculated to 
be 0.728 for a Gaussian and 0.567 for an exponential 
correlation. The dashed curves in Fig. 2 represent the 
small and large time limiting approximations dis- 
cussion in Section 2.2. Figure 2 indicates that the small 
time approximation is acceptable for su/L < 0.4 or 
s/T: < 1.09 for Gaussian f(r) and su/L < 0.15 or 
s/T: < 0.53 for exponential f(r). The relatively nar- 
rower range of validity in exponential turbulence is 
a consequence of the series approximation of f(r) 
involved in the derivation of equation (19a) ; in con- 
trast, equation (I 8) is derived from equation (11) by 
exact analytical integration. The large time approxi- 
mation is acceptable for su/L > 0.4 or s/T: < l-.09 
for the case of Gaussian turbulence ; for exponential 
turbulence, equation (19b) becomes valid only in the 
range of very long times (not shown in Fig. 2) where 
R: is negligible. 

R,L (~1 - R,L (4 Er(~)IUL 1 s/2 

R,L (4 
z l- 

e,(co)/uL+ l/Pe 
= fct(Pe) 

(2% 

for su/L + co, where R:(s) is the Lagrangian cor- 
relation for a fluid particle, E,-(co)/uL is a constant, 
and Q(~I)/uL is a function of Pe. This seems con- 
sistent with the hypothesis explored by Saffman 
[I, IO] that the ratio represented by the left side of 
equation (29) should become independent of time 
at long times. From equation (29) it is noted that for 
Pe + 0 

R: (4 - Rd’ (4 
R:(s) = ’ (30) 

in agreement again with the predictions of Saffman 
[lOI. 

3. RESULTS 

3.1. Parametrization 
When all the equations presented in the previous 

section are nondimensionalized with scales con- 
structed using u and L, only the following three inde- 
pendent dimensionless variables appear in the result- 
ing set of equations: a dimensionless time, tu/L, a 
dimensionless molecular diffusivity (or inverse Peclet 
number), 9/uL, and a dimensionless Eulerian integral 
time scale defined as 

px. (31) 

On dimensional grounds, the integral time scale of the 
Eulerian space-time correlation, TE, is related to the 
eddy circulation time, L/u, and fi is expected to be a 
function of the Reynolds number. 

Two flow cases are examined : (a) Gaussian turbu- 
lence (equations (14) and (16)); and (b) exponen- 
tial turbulence (equations (I 5) and (17)). The choice 
of a Gaussian f(r) is consistent with one of the spec- 
tral energy function prescriptions of Kraichnan [18]. 
Most of the results of this paper were obtained with 
p = 0.5. It is noted that this choice of/? (in conjunction 
with a Gaussian RE(s)) is again consistent with one 
of the choices of Kraichnan [18]. For an error tol- 
erance of 5 = 0.001, convergence is achieved in no 
more than five iterations depending on the value of 
Pe and /l. 
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FIG. 2. Comparison of the Lagrangian correlation R: to the 
Eulerian correlation RE for (a) Gaussian turbulence with 
/? = 0.5 and (b) exponential turbulence with b = 0.5. Curve 
(al): small time approximation from equations (18) and 
(20) (or equation (23) with 9 = 0). Curve (a2) : long time 
approximation from equations (18) and (21) with 
E~(CCI) = 0.3639 uL. and T: = 0.2430. Curve (bl) : from equa- 

tions (19a) and (20) (or equation (26) with %1 = 0). 

,The influence of Pe = uL/9 on the property auto- 
correlation is shown in Fig. 3. The curves for 
Pe = 22.57, II 29 are very close to the correlation for 
a fluid particle, Pe = a. However, for Pe = 2.25, I. I2 
molecular diffusion is found to have a strong effect on 

I .o 

0.8 
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(a) Gaussian -I 

J 

0 0.2 0.4 0.6 0.8 1 .o 
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0 0.2 0.4 0.6 0.8 1.0 
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FIG. 3. Influence of molecular diffusion on the property 
autocorrelation for (a) a Gaussian f(r) and (b) an expon- 

ential f(r). 
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(b) Exponential turbulence. f3 = 0.5. PC = 1.12 

\ 
; 

0. 
(bl) ‘. 

--- ------ -__________L__-- 

0 0.2 0.4 0.6 0.8 1.0 

SlClL 

*FIG. 4. Limiting approximations of property correlations for 
Pe = 1.12. (a) Gaussian turbulence with /? = 0.5 and (b) 
exponential turbulence with p = 0.5. Curve (al) : small time 
approximation from equations (18) and (22) (or equation 
(23)). Curve (a2) : long time approximation from equations 
(18) and (28) with I = 0.3639 uL, q,(co)/~~(m) = 0.424, 
and ss = 0.1577. Curve (a3) : Saffman’s small time approxi- 
mation from equation (25). Curve (bl) : small time approxi- 

mation from equations (19a) and (22) (or equation (26)). 

the property autocorrelation. In Fig. 4 the property 
correlations for Pe = I. I2 are compared to the limit- 
ing approximations of Section 2.2. A consideration of 
the results shown in Fig. 4 indicates that the small 
time approximation, equation (23), for the Gaussian 
case is valid for m/L < 0.25 or s/T; < 1.63. For an 
exponential correlation, equation (26) is valid for 
m/L < 0.05 or s/T> < 0.4. It is noted that equation 
(22) should be valid for increasingly larger m/L as the 
Peclet number decreases and the molecular con- 
tribution to dispersion dominates. As a result, equa- 
tion (23) describes the entire correlation curve in the 
limit of Pe + 0. This is not true, however, for the 
analogous equation (26) for exponential turbulence, 
because the range of validity of equation (l9a) dimin- 
ishes with decreasing Pe (or increasing total dispersion 
D). Saffman’s small time expression equation (25) is 
also included in Fig. 4(a) for comparison. It is seen 
that it is far more restrictive than equation (23) for a 
Gaussian correlation ; it would not be applicable for 
an exponential correlation. A comparison of the 
results presented in Fig. 3 with the long time asymp- 
totic predictions equation (29) of [(Rk-Ri)/R:] for 
two Peclet numbers is shown in Fig. 5. 
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1.0 I  I  I  

: la) Gaussian turbulence. p = 0.5 

de. 0.8 : 
r 

0 0.2 0.4 0.6 0.8 I.0 1.2 

SUlL 

1.0 I I 
(b) Exponential turbulence. p = 0.5 0.959 

0 0.2 0.4 0.6 0.8 I .o 1.2 
SldL 

FIG. 5. Long time behavior of property autocorrelation for 
(a) Gaussian turbulence with p = 0.5 and (b) exponential 

turbulence with /I = 0.5. 

3.3. Dispersion and difusion coefficients 
Turbulent contributions to the dispersions, cal- 

culated from equation (2), are presented in Fig. 6. The 
decrease in the turbulent dispersion with decreasing 
Pe is clearly shown. For small times, where Ri z 1, 
the turbulent dispersion is expected to depend pri- 
marily on the intensity of turbulent velocity fluc- 
tuations. This is illustrated by the approximate inde- 
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1.4 (b) Exponential turbulence. P = 0.5 . 
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FIG. 6. Turbulence contribution to the dispersion for 
(a) Gaussian turbulence with /I = 0.5 and (b) exponential 

turbulence with /I = 0.5. 

pendence of the dispersion from Peclet number that 
is observed for small times. 

A turbulent diffusivity can be calculated from equa- 
tion (3) and the computed property autocorrelation 
functions. The results of this calculation are shown in 
Fig. 7. Here the ratio of the property diffusivity and 
the fluid particle diffusivity at infinite time is plotted 
against the reciprocal of the Peclet number. As men- 
tioned earlier, an exponential correlation is rep- 
resentative of large Reynolds numbers, whereas a 
Gaussian correlation would be more representative 
of low Reynolds numbers. The results appear to be 
sensitive to the choice of a form for the correlation 
only at large values of g/uL. 

The fluid diffusivity at infinite time is calculated (for 
/I = 0.5) as 

E‘( cc) = 0.3639uL 

for a Gaussian correlation and as 

(32) 

E~( cn) = 0.2834uL (33) 

for an exponential correlation. Figure 7 indicates that 
the property eddy diffusivity drops significantly from 
its value for fluid particles for molecular diffusivities 
g/uL > 0.3. Thus, molecular diffusion starts having 
a strong effect on turbulent diffusivity when CS/uL x 
Er(~)IUL. 

Figures 6 and 7 indicate that the turbulent con- 
tribution to the total dispersion of an admixture 
(e.g. heat or mass) from the location of the source, 
decreases with increasing molecular diffusivity (or 
decreasing Peclet number). This is because molecular 
diffusivity causes the admixture to escape from the 
turbulent motions which attempt to disperse it away 
from the source. 

A time varying turbulent diffusivity can be cal- 
culated from equation (3) and the correlation curves 
presented in Fig. 3. The results for two Peclet numbers 
(Pe = 2.25 and 22.57) and Gaussian turbulence are 
shown in Fig. 8. It is seen that at small times q,(t)/uL 
can be represented with a linear function which is not 
dependent on molecular diffusivity. At large times 
it reaches a constant value which, as just shown, 

(a) Gaussian turbulence. p = 0.5 
(b) Exponential turbulence. p = 0.5 

0.01 ‘..‘.‘I ” ‘.“‘I . . ““‘) . ““- 
0.01 0.1 1 10 100 

DIUL 

FIG. 7. Influence of molecular diffusion on the long time 
turbulent diffusivity. 
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/ Gaussian turbulence. p = 0.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

tdL 

FIG. 8. Time dependency of the eddy diffusivity for 
(a) Pe = 2.25 (cd(w) = 0.221) and (b) Pe = 22.57 (q,(m) = 

0.343). 

decreases with decreasing Peclet number. The time 
required for cd(f) to reach I decreases with 
decreasing Peclet number. 

One of the more important results in this paper is 
contained in Fig. 7. Its use in engineering problems 
will require a determination of the sensitivity of the 
calculations to the choice of p defined in equation 
(31). Figure 9 shows the dependence of fluid particle 
diffusivity on B. Figure 10 gives the dependence of 
the calculated sJco)/~~(co) on the choice of 8. It is 
observed that for large values of p, ~~(co)/ar(m) is 
almost independent of b. Therefore, in the range of 
large B, an exact determination of p = TEu/L is not 
necessary in order to determine the turbulent diffu- 
sivity for a given Peclet number. 

4. DISCUSSION AND CONCLUSIONS 

Diffusion of a heat marker or a molecular species 
from a point source in isotropic turbulence is con- 
sidered. The independence approximation of Corrsin 
and the assumption of a Gaussian displacement 
distribution give the result that the ratio of the 
Lagrangian property autocorrelation to the Eulerian 
autocorrelation is a decreasing function of D/L2, 
where D is the mean-squared displacement and L the 
Eulerian length scale. Since the mean-squared dis- 

0.6 9 

0.5 - 

0”’ 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

P 

FIG. 9. Effect of the Eulerian integral time scale j = TEu/L 
on the calculated eddy diffusivity of fluid particles. 

-Gaussian turbulence - 
----- Exponenlial turbulence 

0.3 - 

0.2 “‘I ” ” ” ’ ” ” n 
0 0.2 0.4 0.6 0.8 I.0 1.2 1.4 1.6 1.8 2.0 

P 

FIG. 10. Effect of the Eulerian integral time scale p = TEu/L 
on the calculated property eddy diffusivity for Pe = 1.12 and 

Pe = 22.57. 

placement is defined by equation (2) an iterative 
procedure can be used to calculate the Lagrangian 
property autocorrelation if the Eulerian turbulence 
properties are known. 

For s = 0 equation (11) becomes indeterminate. 
However, the value of R,“(s = 0) is known to be unity 
and equation (11) is applied only for s > 0. In any 
case, equation (11) behaves well for s values in the 
neighborhood of s = 0. As s --f 0 (implying also very 
small dispersion D(s)) the Gaussian factor of the inte- 
grand in equation (11) decays very quickly to zero 
with increasing r. Therefore, the integration in equa- 
tion (11) has to be carried out only up to a small value 
r* (on the order of ,/(D(s))), since contributions from 
values of r > r* will be negligible. For small r values, 
however, f(r) approaches unity and f’(r) approaches 
zero; therefore r2(3f+rf’) z 3r’. With these approxi- 
mations the integration in equation (11) can be carried 
out analytically to yield R;(S) z RE(s) for s + 0. 

The use of Corrsin’s hypothesis could be of some 
concern since Corrsin argued that a relation such as 
equation (5) is valid only for diffusion times long 
enough so that the Lagrangian position and velocity 
of the particle become uncorrelated. Since the inte- 
gration in equation (2) is to be carried out from s = 0, 
equation (5) has to be employed in the range of small 
diffusion times. However, a study by Lundgren and 
Pointin [6] provides encouraging results. Their 
numerical experiments for fluid particle diffusion 
using Kraichnan’s representation of isotropic tur- 
bulence [18] gave the same results as calculations 
based on Corrsin’s hypothesis for all diffusion times. 
Even for unrealistic random fields, agreement was 
found for small times. Lundgren and Pointin suggest 
that in Gaussian fields Corrsin’s approximation is 
acceptable when the displacement of a fluid point is 
only weakly coupled to any one Fourier mode of 
the field. The added decorrelating effect of molecular 
diffusion on the motion of a marker, included in this 
paper, should be expected to make the use of equation 
(5) more justifiable. 

The accuracy of Corrsin’s approximation has been 
discussed in a number of places. Weinstock [19] con- 
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eludes that both the approximation of Corrsin and 
the assumption of a Gaussian distribution for particle 
displacement are valid for homogeneous isotropic 
fields and that their use lcads to a Lagrangian auto- 
correlation lower than the Eulerian time correlation 
for all time delays. Reeks [20] points out that Corrsin’s 
hypothesis is. clearly, less crude than previously 
thought. 

The correct form for the Eulerian velocity cor- 
relation is not known. The Gaussian relation, used in 
this and previous papers (Recks [20], Lundgren and 
Pointin [6]. Kraichnan [IS]. Saffman [9]. Pismen and 
Nir [7]) does not represent large scales of turbulence 
accurately. The exponential form may not represent 
the inertial range correctly. Furthermore, a space- 
time correlation of the form of equation (7) has its 
maximum at I’ = 0 for all time. It is quite possible that 
qualitatively different results could be obtained for 
the ratio R!;(.s)/R’(.s) with correlation functions that 
have maxima at finite values of I’ for non-zero times, 
The ramifications of using a separate form for the 
Eulerian autocorrelation (equation (7)) have not been 
adequately addressed in the literature : further 
research in this direction is warranted. 

The mathematical technique outlined in this paper 
allows for the use of any form for the Eulerian cor- 
relation ; therefore, correlations described by more 
than one length scale could be explored. Several such 
forms have recently been used by Mei [S] in an analysis 
of the dispersion of solid particles. These show that 
the behaviors at low and high Reynolds numbers are, 
respectively. represented by the Gaussian and expon- 
ential functions. 

Because of uncertainties about both the correct 
form of the Eulerian correlation and the more com- 
plicated form of the results when more than one length 
scale is used, we chose to explore two Eulerian space- 
time correlations with single length scales that are 
representative of turbulence at low and high Reynolds 
numbers. The Lagrangian property autocorrelation, 
the dimensionless turbulent contribution to the mean- 
squared displacement and the dimensionless turbulent 
diffusivity are calculated as a function of a dimen- 
sionless time. The influence of molecular diffusivity is 
represented by a Peclet number, uL/2. A decrease in 
the Peclet number (or an increase in the molecular 
diffusivity) causes a decrease in all three of these quan- 
tities at any fixed time. However, for time approaching 
zero the turbulent diffusivity and the turbulence con- 
tribution to the mean-squared displacement becomes 
less sensitive to changes in Pe. Of particular interest is 
the calculated ratio, for large time, of the Lagrangian 
turbulent diffusivity for a given Pe to the Lagrangian 
turbulent diffusivity of fluid particles. For large Peclet 
numbers this ratio is relatively insensitive to the form 
of the Eulerian correlation. The turbulent diffusivity 
is decreased by 10% when the ratio of the molecular 
diffusivity to the long time turbulent diffusivity of 
fluid particles equals 0.2, by 30% when the same ratio 
is unity and by about 50% for a ratio of 2. 

Asymptotic relations can be obtained for small 
and large times by using Taylor’s small and large 
time results for the turbulent contribution to the 
mean-squared displaccmcnt. The small time approx- 
imation agrees with Saffman’s result but is less rc- 
strictive. It requires only that m/L be small, whereas 
the SalTman approximation has the additional require- 
ment of small sg/i’. The long time approximation 
agrees at infinite time with Saffman’s suggestion that 
[(I?:-- R!;)/R:] is a constant for a given Peclct number, 
but is applicable over a larger range of times. This can 
be seen from the comparison of the dashed curve (a2) 
with the calculations in Fig. 4(a). 

Despite the necessary simplifying assumptions. the 
method described in this paper offers a quantitative 
approach to cnginccring heat and mass transfer cal- 
culations. The validity of the assumptions and the 
overall accuracy of the method could be assessed by 
comparisons with results obtained by a direct numcri- 
cal simulation of a practical flow. Such results on 
the effect of molecular diffusivity on the Lagrangian 
property autocorrelation in the center of a numerically 
simulated turbulent channel are reported in a rcccnt 
thesis by Kontomaris [3]. 
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